Relaxation Schemes for the Shallow Water equations

Th. Katsaounis
joint work with
A. Delis

Dept. of Applied Mathematics, Univ. of Crete,
Institute of Applied and Computational Mathematics, FORTH,
Technical University of Crete, Greece
Overview

- Realaxation Model for Conservation Laws
 - Scalar and Systems of Cons. Laws
 - Conservation Laws with Source Terms

- Shallow Water Equations - 1D
 - Relaxation Model
 - Relaxation Schemes
 - Numerical Results

- Shallow Water Equations - 2D
 - Relaxation Model and Schemes
 - Numerical Results
Relaxation Model for Scalar CL

\[u_t + f(u)_x = 0, \quad x \in \mathbb{R}, \quad t > 0, \]
\[u(x, 0) = u_0(x), \quad x \in \mathbb{R}. \]

(1)

Relaxation system proposed by Jin & Xin 1995

\[u_t + v_x = 0, \]
\[v_t + c^2 u_x = -\frac{1}{\epsilon}(v - f(u)). \]

(2)

This system can be viewed as a regularization of (1) by the wave operator

\[u_t + f(u)_x = -\epsilon(u_{tt} - c^2 u_{xx}). \]

Applying the Champan-Enskog expansion we get

\[u_t + f(u)_x = \epsilon \partial_x \left(\left(c^2 - f'(u)^2 \right) \partial_x u \right) + O(\epsilon^2). \]

If the \textit{subcharacteristic condition} : \(|f'(u)| < c\) holds then a rigorous convergence analysis, for 1D scalar case, can be applied yielding at the relaxation limit \(\epsilon \to 0\) the conservation law (1). (JX, 1995)
Relaxation Model with Source term, I

For a conservation law with a source term

$$u_t + f(u)_x = q(u), \quad x \in \mathbb{R}, \ t > 0,$$
$$u(x, 0) = u_0(x), \quad x \in \mathbb{R},$$

a relaxation system considered takes the form

$$u_t + v_x = q(u),$$
$$v_t + c^2 u_x = -\frac{1}{\epsilon}(v - f(u)),$$

yielding the following regularization of (3),

$$u_t + f(u)_x = q(u) + \epsilon q(u)_t - \epsilon (u_{tt} - c^2 u_{xx}).$$

Remarks
1) Same subcharacteristic condition
2) Extra term : $\epsilon q(u)_t$.
3) In general (4) does not preserve the steady states.
4) The time discretization of (4)
Relaxation Model with Source term, II

\[
\begin{align*}
\frac{U^{n+1} - U^n}{\Delta t} + V^n_x &= q(U^{n+1}), \\
\frac{V^{n+1} - V^n}{\Delta t} + c^2 U^n_x &= -\frac{1}{\epsilon}(V^{n+1} - f(U^{n+1})),
\end{align*}
\]

is fully coupled system, not the case for the corresponding time discretization of (2). An alternative approach: we consider the following relaxation system

\[
\begin{align*}
 u_t + v_x &= 0, \\
 v_t + c^2 u_x &= -\frac{1}{\epsilon}(v - f(u)) - \frac{1}{\epsilon} R(u),
\end{align*}
\]

where \(R(u) \) is an antiderivative of \(q(u) \),

\[
R(u(x)) = \int_x^x q(u(s)) \, ds.
\]
In this case (6) provides exactly a wave-type regularization of (3),

\[u_t + f(u)_x = q(u) - \epsilon(u_{tt} - c^2u_{xx}). \]

(7)

Also an implicit-explicit time discretization is now possible when we treat the source terms implicitly:

\[
\frac{U^{n+1} - U^n}{\Delta t} + V^n_x = 0,
\]

\[
\frac{V^{n+1} - V^n}{\Delta t} + c^2U^n_x = -\frac{1}{\epsilon}(V^{n+1} - f(U^{n+1})) - \frac{1}{\epsilon}R(U^{n+1}).
\]

(8)

If \(|f'(u)| < c\) from (7) we recover formally (3)

System (6) preserves steady states

Initial, Boundary Cond. : \(v_0 = f(u_0), \ v_b = f(u_b)\)
System of CL

\[
\partial_t u + \sum_{j=1}^{d} \partial_{x_j} F_j(u) = 0, \quad x \in \mathbb{R}^d, \quad u = u(x, t) \in \mathbb{R}^n, \quad t > 0
\]

\[
u(\cdot, 0) = u_0(\cdot)
\]

Relaxation model

\[
\partial_t u + \sum_{j=1}^{d} \partial_{x_j} v_j = 0,
\]

\[
\partial_t v_i + A_i \partial_{x_i} u = -\frac{1}{\epsilon} (v_i - F_i(u)), \quad i = 1, \ldots, d
\]

It's a regularization by a wave operator of order \(\epsilon \), and \(A_i \) are symmetric positive definite matrices with constant coefficients that are selected to satisfy the corresponding *sub-characteristic conditions*.
Shallow water eqns (1D)

\[h_t + (hu)_x = 0, \]
\[(hu)_t + (hu^2 + \frac{g}{2}h^2)_x = -ghZ', \]

General steady states:

\[Q = hu = \text{Cnst} \]
\[\frac{u^2}{2} + g(h + Z) = \text{Cnst} \]

SWE is a hyperbolic system with source term
SW Relaxation Models I

Relaxation Model A

\[
\begin{align*}
 h_t + v_x &= 0 \\
 Q_t + w_x &= -ghZ' \\
 v_t + c_1^2 h_x &= -\frac{1}{\epsilon}(v - Q) \\
 w_t + c_2^2 Q_x &= -\frac{1}{\epsilon}(w - \left(\frac{Q^2}{h} + \frac{g}{2}h^2\right)) \\
\end{align*}
\]

Relaxation Model B

\[
\begin{align*}
 h_t + v_x &= 0 \\
 Q_t + w_x &= 0 \\
 v_t + c_1^2 h_x &= -\frac{1}{\epsilon}(v - Q) \\
 w_t + c_2^2 Q_x &= -\frac{1}{\epsilon}(w - \left(\frac{Q^2}{h} + \frac{g}{2}h^2\right)) + \frac{1}{\epsilon}R(Z; h) \\
\end{align*}
\]
$R(Z; h)(x) = \int_x^x g(hZ')(y)dy$

- c_1, c_2 are chosen according to sub-characteristic condition:

$$|\lambda_i(F')| < c_i, \quad i = 1, 2, \quad F' = \text{Jacobian of flux vector}$$

- For $Z \equiv 0$, $(A) \equiv (B)$

- For $\epsilon \to 0$ we recover the original SW system

- Both relaxation systems have linear principal part

- Implicit-explicit time discretizations for (B)

- System (B) have same steady states as the continuous problem
We consider the *Relaxation Model B* and let

\[u = \begin{bmatrix} h \\ Q \end{bmatrix}, \quad v = \begin{bmatrix} v \\ w \end{bmatrix}, \]

our system can be rewritten as

\[
\begin{align*}
\frac{du}{dt} + \frac{dv}{dx} &= 0, \\
\frac{dv}{dt} + C^2 \frac{du}{dx} &= -\frac{1}{\epsilon}(v - F(u)) - \frac{1}{\epsilon}S(u),
\end{align*}
\]

\[
F(u) = (Q, \frac{Q^2}{h} + \frac{g}{2} h^2)^T, \quad S(u) = (0, -\int x g(h(y)Z'(y))dy)^T
\]

where \(u, v \in \mathbb{R}^2 \) and \(C^2 \in \mathbb{R}^{2 \times 2} \) is a positive matrix.
Upwind Scheme I

We assume a uniform spaced grid with $\Delta x = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}$ and a uniform time step $\Delta t = t^{n+1} - t^n$, $n = 0, 1, 2, \ldots$.

\[u_i^n \sim \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} u(x, t^n) \, dx, \quad u_i^{n+\frac{1}{2}} \sim u(x_{i+\frac{1}{2}}, t^n) \]

We start by considering the following one-step conservative system for the homogeneous case (no source term present)

\[\frac{\partial}{\partial t} u_i + \frac{1}{\Delta x} (v_{i+\frac{1}{2}} - v_{i-\frac{1}{2}}) = 0, \]
\[\frac{\partial}{\partial t} v_i + \frac{1}{\Delta x} C^2 (u_{i+\frac{1}{2}} - u_{i-\frac{1}{2}}) = -\frac{1}{\epsilon} (v_i - F(u_i)). \]

The linear hyperbolic part has two Riemann invariants (characteristic speeds) $v \pm Cu$ associated with the characteristic fields $\pm C$ respectively. The first order upwind approximation of $v \pm Cu$ is

\[(v + Cu)_{i+\frac{1}{2}} = (v + Cu)_i, \quad (v - Cu)_{i+\frac{1}{2}} = (v - Cu)_{i+1}. \]
Upwind Scheme II

Hence,

\[u_{i+\frac{1}{2}} = \frac{1}{2}(u_i + u_{i+1}) - \frac{1}{2}C^{-1}(v_{i+1} - v_i), \]

\[v_{i+\frac{1}{2}} = \frac{1}{2}(v_i + v_{i+1}) - \frac{1}{2}C(u_{i+1} - u_i). \]

First order upwind semi-discrete approximation of the relaxation scheme:

\[\frac{\partial}{\partial t} u_i + \frac{1}{2\Delta x} (v_{i+1} - v_{i-1}) - \frac{1}{2\Delta x} C(u_{i+1} - 2u_i + u_{i-1}) = 0, \]

\[\frac{\partial}{\partial t} v_i + \frac{1}{2\Delta x} C^2(u_{i+1} - u_{i-1}) - \frac{1}{2\Delta x} C(v_{i+1} - 2v_i + v_{i-1}) = -\frac{1}{\epsilon}(v_i - F(u_i)) \]

\[-\frac{1}{\epsilon}S(u_i), \]

where

\[S(u_i) = \begin{bmatrix} 0 \\ -\int_{x_i}^{x_{i+1}} gh(y)Z'(y)dy \end{bmatrix}. \]
MUSCL Scheme, I

We replace the piecewise constant approximation by a MUSCL piecewise linear interpolation: for the k-th component of $v \pm Cu$ we have:

\[
(v + c_k u)_{i + \frac{1}{2}} = (v + c_k u)_i + \frac{1}{2} \Delta x s^+_i, \\
(v - c_k u)_{i + \frac{1}{2}} = (v - c_k u)_{i + 1} - \frac{1}{2} \Delta x s^-_{i + 1},
\]

where u, v are the k-th components of v, u and the slopes s^\pm in the i-th cell:

\[
s^\pm_i = \frac{1}{\Delta x} (v_{i + 1} \pm c_k u_{i + 1} - v_i \mp c_k u_i) \phi(\theta^\pm_i), \\
\theta^\pm_i = \frac{v_i \pm c_k u_i - v_{i - 1} \mp c_k u_{i - 1}}{v_{i + 1} \pm c_k u_{i + 1} - v_i \mp c_k u_i},
\]

where ϕ is a limiter function satisfying $0 \leq \phi(\theta) \leq \text{minmod}(2, 2\theta)$.

- MinMod (MM): $\phi(\theta) = \max(0, \min(1, \theta))$
- VanLeer (VL): $\phi(\theta) = \frac{|\theta| + \theta}{1 + |\theta|}$
- Monotonized Central (MC): $\phi(\theta) = \max(0, \min((1 + \theta)/2, 2, 2\theta))$
MUSCL Scheme, II

Second order semi-discrete relaxation scheme (componentwise form)

\[
\frac{\partial}{\partial t} u_i + \frac{1}{2\Delta x}(v_{i+1} - v_{i-1}) - \frac{c_k}{2\Delta x}(u_{i+1} - 2u_i + u_{i-1}) \\
- \frac{1}{4}(s_{i+1}^- - s_i^- + s_{i-1}^+ - s_i^+) = 0,
\]

\[
\frac{\partial}{\partial t} v_i + \frac{c_k^2}{2\Delta x}(u_{i+1} - u_{i-1}) - \frac{c_k}{2\Delta x}(v_{i+1} - 2v_i + v_{i-1}) \\
+ \frac{c_k}{4}(s_{i+1}^- - s_i^- - s_{i-1}^+ + s_i^+) = -\frac{1}{\varepsilon}(v_i - F_k(u_i)) - \frac{1}{\varepsilon}S_k(u_i),
\]

with S_k, F_k being the k–th components of S, F respectively.
Fully Discrete Schemes, I

A first order in time RK-type scheme, \((Z \equiv 0)\)

(A) Given \(u^n, v^n\) apply a finite volume method to update \(u, v\) over time \(\Delta t\) by solving the homogeneous linear hyperbolic system

\[
\begin{bmatrix}
 u \\
 v
\end{bmatrix}_t + \begin{bmatrix}
 0 & I \\
 C^2 & 0
\end{bmatrix}
\begin{bmatrix}
 u \\
 v
\end{bmatrix}_x = \begin{bmatrix}
 0 \\
 0
\end{bmatrix},
\]

and obtain new values \(u^{(1)}, v^{(1)}\).

(B) Update \(u^{(1)}, v^{(1)}\) to \(u^{n+1}, v^{n+1}\) by solving the equations,

\[
\begin{align*}
 u_t &= 0, \\
 v_t &= -\frac{1}{\epsilon}(v - F(u)),
\end{align*}
\]

over time \(\Delta t\).
A second order in time RK-type scheme,

\[
\begin{align*}
 u^{n,1} &= u^n, & v^{n,1} &= v^n + \frac{\Delta t}{\epsilon}(v^{n,1} - F(u^{n,1})) + \frac{\Delta t}{\epsilon}S(u^{n,1}); \\
 u^{(1)} &= u^{n,1} - \Delta tD_+v^{n,1}, & v^{(1)} &= v^{n,1} - \Delta tC^2D_+u^{n,1}; \\
 u^{n,2} &= u^{(1)}, \\
 v^{n,2} &= v^{(1)} - \frac{\Delta t}{\epsilon}(v^{n,2} - F(u^{n,2})) - \frac{2\Delta t}{\epsilon}(v^{n,1} - F(u^{n,1})) \\
 &\quad - \frac{\Delta t}{\epsilon}S(u^{n,2}) - \frac{2\Delta t}{\epsilon}S(u^{n,1}); \\
 u^{(2)} &= u^{n,2} - \Delta tD_+v^{n,2}, & v^{(2)} &= v^{n,2} - \Delta tC^2D_+u^{n,2}; \\
 u^{n+1} &= \frac{1}{2}(u^n + u^{(2)}), & v^{n+1} &= \frac{1}{2}(v^n + v^{(2)}).
\end{align*}
\]

where

\[
D_+w_i = \frac{1}{\Delta x}(w_{i+\frac{1}{2}} - w_{i-\frac{1}{2}}).
\]
Choice of parameters

■ CFL Condition

1st order scheme : \(\max\{c_1, c_2\} \frac{\Delta t}{\Delta x} \leq 1\)

2nd order scheme : \(\max\{c_1, c_2\} \frac{\Delta t}{\Delta x} \leq \frac{1}{2}\)

■ Choice of \(c_1, c_2\) : based on rough estimates of the eigenvalues : \(u \pm \sqrt{gh}\) and satisfy the subcharacteristic condition

\[
c_1 \geq \sup |u + \sqrt{gh}| \quad \text{and} \quad c_2 \geq \sup |u - \sqrt{gh}|
\]

\[
c_1 = c_2 = \max \left\{ \sup |u + \sqrt{gh}|, \sup |u - \sqrt{gh}| \right\}
\]

■ Choisce of \(\epsilon\) : \(\epsilon << \Delta x, \epsilon << \Delta t\)
Dam Break Flow $Z \equiv 0$

We consider a channel of length $L = 2000m$. A dam is located at $x_0 = 1000m$ and at time $t = 0$ the dam collapses. We compute the solution for time $T = 50s$ with initial conditions:

$$u(x, 0) = 0, \quad h(x, 0) = \begin{cases} h_1 & x \leq 1000, \\ h_0 & x > 1000, \end{cases}$$

with $h_1 > h_0$. This is the Riemann problem for the homogeneous problem. The flow consists of a shock wave (bore) travelling downstream and a rarefaction wave (depression wave) travelling upstream. The upstream depth h_1 was kept constant at 10m, while the downstream depth h_0 was different for each problem.

- $h_0/h_1 > 0.5$: subcritical flow
- $h_0/h_1 < 0.5$: subcritical upstream, supercritical downstream
- $h_0/h_1 << 0.5$: strongly supercritical downstream
- $CFL = 0.5m$, $\Delta x = 20m$, $c_1 = 5$, $c_2 = 12$, $\epsilon = 1.E - 4$
Figure 1: Dam-break flow, $h_0/h_1=0.5$, (x) Upwind and (o) MUSCL with MC limiter.
Figure 2: Dam-break flow, $h_0/h_1=0.05$, (x)Upwind and (o)MUSCL with MC limiter.
Figure 3: Dam-break flow, $h_0/h_1=0.005$, (\times)Upwind and (o)MUSCL with MC limiter.
Dry Bed problem, $h_0 = 0$

This a challenging problem as a result of the singularity that occurs at the transition point of the advancing front. We compute the solution at $T = 40s$

- No modifications to the scheme to incorporate the dry area
- Globally accurate results free of oscillations
- The water height and discharge remain positive
- The transition point between the wet and the dry zone is close to the exact one, but some difficulties appear on the velocity.
- Overall the solution is stable, monotone with no special front tracking techniques
- $CFL = 0.5 \Delta x = 10m, c_1 = 18, c_2 = 16, \epsilon = 1.E^{-4}$
Dry Bed problem, Water Height

Figure 4: Dry bed dam-break flow \((h)\), (o)MUSCL with MM limiter.
Figure 5: Dry bed dam-break flow (q), (o)MUSCL with MM limiter.
Dry Bed problem, Velocity

Figure 6: Dry bed dam-break flow (u), (o)MUSCL with MM limiter.
Flow at Rest, \(Z \neq 0 \)

We consider a channel of length \(L = 25m \) with a non-trivial bathymetry \(Z \), with initial conditions

\[
\begin{align*}
 u(x, 0) &= 0, \quad \forall x \in \mathbb{R}, \\
 h(x, 0) + Z(x) &= H, \quad \forall x \in \mathbb{R},
\end{align*}
\]

Exact solution

\[
\begin{align*}
 u(x, t) &= 0, \quad \forall x \in \mathbb{R}, t \geq 0, \\
 h(x, t) + Z(x) &= H, \quad \forall x \in \mathbb{R}, t \geq 0,
\end{align*}
\]

\[
Z(x) = \begin{cases}
 0.2 - 0.05(x - 10)^2, & 8 \leq x \leq 12, \\
 0, & \text{otherwise},
\end{cases}
\]

with \(H = 2m, \quad \epsilon = 1.E - 5, \quad c_1 = 4, c_2 = 4.5, \quad CFL = 0.5, \quad T = 200s, \quad \Delta x = 0.125 \)
Flow at Rest, Water Height

Figure 7: Flow at rest (water height): (+) standard source, (o) integral source
Figure 8: Flow at rest (discharge): (+) standard source, (o) integral source
Figure 9: Flow at rest: Magnified view of the discharge.
\(\epsilon \)-dependance of the solution

The variance of the values of the water level as well as of the discharge from the steady states, as \(\epsilon \to 0 \) are of \(O(\epsilon) \) as can be seen in Table.

Table 1: \(\ell_1 \) errors for water level and discharge (\(CFL = 0.5 \)).

<table>
<thead>
<tr>
<th>(\epsilon)</th>
<th>(\ell_1) error for (h)</th>
<th>Rate((h))</th>
<th>(\ell_1) error for (q)</th>
<th>Rate((q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.E-1)</td>
<td>(3.212E-3)</td>
<td>(-)</td>
<td>(2.327E-2)</td>
<td>(-)</td>
</tr>
<tr>
<td>(8.E-2)</td>
<td>(2.271E-3)</td>
<td>(1.551)</td>
<td>(1.921E-2)</td>
<td>(0.860)</td>
</tr>
<tr>
<td>(6.E-2)</td>
<td>(1.425E-3)</td>
<td>(1.619)</td>
<td>(1.478E-2)</td>
<td>(0.908)</td>
</tr>
<tr>
<td>(4.E-2)</td>
<td>(7.383E-4)</td>
<td>(1.628)</td>
<td>(1.000E-2)</td>
<td>(0.954)</td>
</tr>
<tr>
<td>(2.E-2)</td>
<td>(2.646E-4)</td>
<td>(1.480)</td>
<td>(5.154E-3)</td>
<td>(0.962)</td>
</tr>
</tbody>
</table>
Non trivial steady states

We consider with the convergence towards steady flow over the parabolic hump in a channel of length $L = 25m$.

Depending on the boundary conditions the flow maybe subcritical, transcritical with a shock or without a shock. In all cases we use MUSCL scheme with

\[
CFL = 0.5, \quad \Delta x = 0.125m, \quad T = 200s, \quad \epsilon = 1.E - 5, \quad c_1 = 5, \quad c_2 = 7
\]

\[
u(x, 0) = 0, \quad \forall x \in \mathbb{R},
\]

\[
h(x, 0) + Z(x) = H_0, \quad \forall x \in \mathbb{R},
\]

where H_0 water level downstream.

- **Subcritical Flow**: $q_{up} = 4.42m^2/s, \quad H_0 = 2m$

- **Transcritical Flow without shock**: $q_{up} = 1.53m^2/s, \quad H_0 = 0.66m$

- **Transcritical Flow with shock**: $q_{up} = 0.18m^2/s, \quad H_0 = 0.33m$
Figure 10: Subcritical flow over a hump (h).
Subcritical Flow: Discharge

Figure 11: Subcritical flow over a hump (q).
Figure 12: Transcritical flow over a hump (h).
Figure 13: Transcritical flow over a hump (q).
Figure 14: Transcritical flow with shock (h)
Transcritical Flow with shock: Discharge

Figure 15: Transcritical flow with shock (q)
Drain on a non-flat bottom.

- Difficult problem since it involves the calculation of dry areas.

- BC’s: Upstream reflective, Downstream dry bed

- IC’s: \(h + Z = 0.5m \) and \(q = 0m^3/s \)

- Solution: a state at rest, on the left part of the hump with \(h + Z = 0.2m \) with \(q = 0m^3/s \) and a dry state (i.e. \(h = 0 \) and \(q = 0m^3/s \)) on the right of the hump.

- MUSCL scheme with \(\Delta x = 0.1m, \ CFL = 0.5, \, \epsilon = 1\times10^{-6}, \, c_1 = c_2 = 3.5 \)

- No modification of the method to overcome the dry area problem of zero depth and discharge.
Drain on a non-flat bottom: Water Level

Figure 16: Drain on a non-flat bottom (h)
Drain on a non-flat bottom: Discharge

Figure 17: Drain on a non-flat bottom (q)
The 2D Shallow Water Equations

\[U_t + F(U)_x + G(U)_y = S(U); \quad (x, y) \in \Omega, \quad t \geq 0 \]

\[
U = \begin{pmatrix} h \\ hu_1 \\ hu_2 \end{pmatrix} = \begin{pmatrix} h \\ q_1 \\ q_2 \end{pmatrix}, \quad S(U) = \begin{pmatrix} 0 \\ -gh \frac{\partial Z}{\partial x}(x, y) - gh S^x_f \\ -gh \frac{\partial Z}{\partial y}(x, y) - gh S^y_f \end{pmatrix},
\]

\[
F(U) = \begin{pmatrix} q_1 \\ \frac{q_1^2}{h} + \frac{1}{2} gh^2 \\ \frac{q_1 q_2}{h} \end{pmatrix}, \quad G(U) = \begin{pmatrix} q_2 \\ \frac{q_1 q_2}{h} \\ \frac{q_2^2}{h} + \frac{1}{2} gh^2 \end{pmatrix}.
\]

\[S^x_f = n_m^2 u_1 \sqrt{u_1^2 + u_2^2 h^{-4/3}} \]

\[S^y_f = n_m^2 u_2 \sqrt{u_1^2 + u_2^2 h^{-4/3}}, \]

where \(n_m \) is the Manning roughness coefficient.
Relaxation System for 2D SWE

\[
\begin{bmatrix}
 u \\
 v \\
 w
\end{bmatrix}_t + \begin{bmatrix}
 0 & I & 0 \\
 C^2 & 0 & 0 \\
 0 & 0 & 0
\end{bmatrix}\begin{bmatrix}
 u \\
 v \\
 w
\end{bmatrix}_x + \begin{bmatrix}
 0 & 0 & I \\
 0 & 0 & 0 \\
 D^2 & 0 & 0
\end{bmatrix}\begin{bmatrix}
 u \\
 v \\
 w
\end{bmatrix}_y = \begin{bmatrix}
 0 \\
 -\frac{1}{\epsilon}(v - F(u) + \tilde{S}(u)) \\
 -\frac{1}{\epsilon}(w - G(u) + \tilde{\tilde{S}}(u))
\end{bmatrix}
\]

\[\tilde{S}(u) = \begin{bmatrix}
 0 \\
 -\frac{1}{2} \int_x^x gh(s, y) \frac{\partial Z}{\partial x}(s, y) ds \\
 -\frac{1}{2} \int_x^x gh(s, y) \frac{\partial Z}{\partial y}(s, y) ds
\end{bmatrix}\]

\[\tilde{\tilde{S}}(u) = \begin{bmatrix}
 0 \\
 -\frac{1}{2} \int_y^y gh(x, s) \frac{\partial Z}{\partial x}(x, s) ds \\
 -\frac{1}{2} \int_y^y gh(x, s) \frac{\partial Z}{\partial y}(x, s) ds
\end{bmatrix}\]

Subcharacteristic condition:

\[\frac{\lambda_i^2}{c_i^2} + \frac{\mu_i^2}{d_i^2} \leq 1, \quad \forall \ i = 1, 2, 3,\]

with \(\lambda_i, \mu_i\) the eigenvalues of \(\partial F(u)/\partial u\) and \(\partial G(u)/\partial u\) respectively.
Fully Discrete Schemes

- Upwind scheme: 1st order in space and time
- MUSCL scheme: 2nd order in space and time
- CFL condition, guarantees the TVD property of both schemes

\[
CFL = \max \left(\left(\max_i c_i \right) \frac{\Delta t}{\Delta x}, \left(\max_i d_i \right) \frac{\Delta t}{\Delta y} \right) \leq \frac{1}{2}.
\]

- Initial, Boundary Cond.: \(v_0 = F(u_0), \ w_0 = G(u_0), \ v_b = F(u_b), \ w_b = G(u_b) \)

- Choice of \(c_k, d_k, k = 1, 2, 3 \):

 1. rough estimates of the eigenvalues \((u_1, u_1 \pm \sqrt{gh}) \) and \((u_2, u_2 \pm \sqrt{gh}) \)
 2. calculate \(c \) and \(d \) locally at every cell as

 \[
 c_{i+\frac{1}{2},j} = \max_{u \in \{u_{i+\frac{1}{2},j}, u_{i-\frac{1}{2},j}\}} \left| \partial F(u)/\partial u_k \right|
 \]
 \[
 d_{i,j+\frac{1}{2}} = \max_{u \in \{u_{i,j+\frac{1}{2}}, u_{i,j-\frac{1}{2}}\}} \left| \partial G(u)/\partial u_k \right|
 \]
 3. global choice: \(c_k = d_k = \max_{i,j} (c_{i+\frac{1}{2},j}, d_{i,j+\frac{1}{2}}) \)

- \(\Delta t \gg \epsilon \) and \(\Delta y, \Delta x \gg \epsilon \)
The dam, located in the center of a channel breaks instantaneously.

- No friction ($n_m = 0$). $h_u = 10m$ and $h_d = 5, 0.1, 0m$

- Channel: $200m \times 200m$, 41×41 square grid.

- The breach is $75m$ in length, $30m$ from the left bank, $95m$ from the right.

- BC’s: $x = 0$ and $x = 200m$ transmissive and all other boundaries are reflective.

- 2nd order MUSCL scheme

- $\epsilon = 10^{-6}$ and $c_1 = 10, c_2 = 6, c_3 = 11, d_1 = 10, d_2 = 5, d_3 = 11$

- $T = 7.2s$
Figure 18: at $T = 7.2s$, Water depth, depth contours, velocity field
2D Partial Dam-Break, $h_d = 0.1m$

Figure 19: at $T = 7.2s$, Water depth, depth contours, velocity field
2D Partial Dam-Break, $h_d = 0\text{m}$

Figure 20: at $T = 7.2s$, Water depth, depth contours, velocity field
2D Partial Dam-Break - Movie
Circular Dam Break

- A two dimensional Riemann problem for the 2D SWEs

- Two regions of still water separated by a cylindrical wall with radius 11m centered in a channel. The water depth within the cylinder is 10m and 1m outside.

- The wall is removed instantaneously, the bore waves will spread and propagate radially and symmetrically

- There is a transition from subcritical to supercritical flow.

- 2nd order MUSCL scheme

- Channel: 50 x 50m, 51 x 51 square grid

- $\epsilon = 10^{-6}$ and $c_1 = c_3 = 12$, $c_2 = 7$, $d_1 = d_3 = 12$, $d_2 = 7$, $T = 0.69s$
Figure 21: at $t = 0.69s$, Water depth, depth contours, velocity field, (MM, VL limiter)
Figure 22: at $t = 0.69s$, Water depth, depth contours, velocity field, (MC, SB limiters)
Circular Dam Break, Dry Bed

Figure 23: at $t = 0.69s$, Water depth, depth contours, velocity field, (VL limiter)
Consider a channel 75\(m\) long and 30\(m\) wide

A dam is situated at \(x = 16\)m with initial water depth \(h + Z = 1.875\)m while the rest of the channel is considered dry.

The topography consists of three mounds located in the channel bottom.

Manning coefficient \(n_m = 0.018, c_i = d_i = 5, \epsilon = 1.E - 8\)
Dam Break in channel with topography, movie
Conclusions

- Relaxation Schemes for SW which combine
 - Simplicity
 - Robustness
 - Efficiency
 - Riemann solver free

- Novel ways to incorporate source terms

- Small errors of order of ϵ while preserving steady states.

- The benchmark tests show that the schemes provide accurate solutions in good agreement with well known analytical solutions.

- Comparable solutions with well known solvers

- Can be considered for practical applications?
References

■ Delis Al, Katsaounis Th., *Numerical solution of the two-dimensional shallow water equations by the application of relaxation methods*, App. Math. Model., 2005

■ Ch. Arvanitis, Ch. Makridakis, A. Tzavaras, *Stability and convergence of a class of finite element schemes for hyperbolic systems of conservation laws*, SINUM, 2004
